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The Characteristic Impedance of a Family
of Rectangular Coaxial Structures with

Off-Centered Strip Inner Conductors
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Abstruct-A two-parameter family of hyperelfiptic fntegrafs is exhibited

I
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which maps the upper baff-phsse into the interior of a rectaogfe pierced by
a reentrant fine. SiQce these integrals can be expressed as tbe ssms of
efffptic integrafs of the fii Ms@ the odd- and even-mode characteristic

~
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impedances of a two-parameter faruify of coaxial structures whose inner

conductors are strips, displaced perpendicsdarly to their width from the

center of the outer rectangular conductor, ears be expressed in terms of
o o*

these well-known fsmetions. Numerical vafssesare given for a range of

x

Z–PLANE

vafuea of FV/B and B,/B. Here W is the width of the strip, B is the
height of the outer redangufar conductor, and B1 is the distance from the

strfp to the farthest parallel watf of the outer conductor.

1-PLANE

I. INTRODUCTION
1

T HE DESIGN of a broad class of coupled transmis-
,

sion-line directional couplers [1 ]–[3] depends on the ~

even- and odd-mode characteristic impedances of rectan- u- PiANE

gular coaxial line in which the rectangular inner conduc- 1
tor, sometimes idealized as being infinitely thin, is dis-

placed from the center of the outer rectangular conductor
Fig. 1. Z-, t-,and u-planes.

in a direction parallel to one of its sides. In the only case

for which an exact solution is known [4], the inner con- Z-plane of Fig. 1. The capital letters indicate correspond-
ductor is a strip which is displaced from the center of the ing points in the two figures. We shall see how the value

rectangular outer conductor parallel to its width. of d between 1/b and 1/a can be chosen so that sides OF
In this paper, the even- and odd-mode characteristic and AB are the same length. It is then clear that, by

impedances of a two-parameter familyl of coaxial struc- reflecting the Z-plane polygon in the line FB, a rectangu-
tures, in which the inner conductor is a strip which is lar coaxial structure is formed in which the outer conduc-

displaced from the center of the rectangular outer conduc- tor consists of a rectangle of height OA and width 2F0
tor perpendicular to its width, are given. These exact while the inner conductor is a strip of zero thickness and

solutions not only permit the exact design of broadside- of width 2ED. Although this strip is centered in the 2F0

coupled strip couplers [5] but also provide solutions of dimension, it is not, in general, centered in the OA dimen-

known accuracy with which more general approximations sion.
may be compared.

The Schwartz–Cristoffel transformation II. EVALUATION OF THE INTEGRAL

//

(d-t)dt Since d–t=(d– l)(l+t)/2+(d+ 1)(1 –t)/2,
z= t (1)

0 t(t2–(a+ l/a)t+l)(t2– (b+l/b)t+l) z=;

maps the upper half of the t-plane in Fig. 1 into the

J{d
interior of the reentrant, quadrilateral polygon in the . ~

(d- 1)(1 –t2)dt

o t(l–t)2(t2– (a+ l/a)t+ l)(t2– (b+ l/b)t+ 1)
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(d+ 1)(1 –t’)dt

1It should be observed that this does not include all coaxial structures
1

. (2)

of this form.
t(l +t)2(t2– (a+ l/a)t+ l)(f2– (b+ l/b)t+l)
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This can be written
. .

(1-t’)dt

(1 -1-t’)’
.— (3)

i

t(~2+l–(a+ l/a)t)(t2+ l–(b+l/b)t) “

(l+t’)(ll +t’)(l+ t’)

Now if the change of variable2 u = t/(1+ t2) is made,

it will be found that du/’dt = (1 – t2)/(1 + t2)2, 1 + 2U =

(1+ t)2/(1 + t’), and 1 –2u = (1 – t)2/(1 + t2).Thus the

original transformation can be written

du
(4)

~zf(l –(a+I/a)u)(l– (b+ l/b)u) “

By this change of variable, the original transformation

has been expressed as the sum of two elliptic integrals of

the first kind. The transformation u = t /(t2 + 1) maps the

upper ha If t-plane into the entire u-plane containing the

two branch points ~ 0.5, which may be joined by a

branch cut since the points corresponding to a and 1/a,

for example, are not at the same point in the u-plane.

Thus the path of integration along the indented, real

axis of the t-plane maps into the indented, closed loop
surrounding the branch cut in the u-plane as shown m

Fig. 1. C)f course, a = a/(1+ a’), ~= b/(1+ b’), and 8=

d/(1 + d2). It is important to observe that a + l/a and

b + 1/b:> 2 since the geometric mean is less than the

aritlhmeti c mean. Thus a and /?< 0.5. Moreover, it is

readily demonstrated that ~ – a >0 whenever 1 >b > a >

0. Thus we know that a <6 </3.

III. THE DIMENSIONS OF THE POLYGON

If y =0.5, then (4), except for a scale factor, can be

written

‘=(d-l)~”
du

Vu(a – U)(p– U)(y– u)

du
+(d+l)~”

i(y+u)u(a - U)(p- U)
(5)

where all integrations are performed on the loop encir-

cling the branch cut in the u-plane. The values of these
integrals are not single valued functions of the limits,

‘The use of this change of variable to reduce the hyperelliptic integral
of the form in (2) to the sum of two elhptic integrals of the first kind is
due to Roberts [6].
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Fig. 2. R,(u) and R2(u) surfaces.

however, but depend on the actual paths of integration. If

R,(u) denotes the radical in the first integral and R2(u:)

denotes the radical in the second integral, the ecu-respond-

ing Riemann surfaces are shown in Fig. 2 with the proper

branch cuts. Although at no time does the path of integra-

tion cross a branch cut in either surface, it !should bc

noted that R,(u) and R2(u) each have different signs on

opposite sides of a branch cut. With this in mind, it is

readily seen that the directed lengths of the sides of the

polygon are

OA=(d–

AB==(d–

(6)

Here it is assumed that these integrals are given their

principal value, that is, their value cm the upper half of the

u-plane.

These ellliptic integrals of the first kind may be

evaluated by transforming them to Legendre’s normal

form. This is done in the Appendix by transfcmning th:

R ~(u)-surface into the Rm(u)-surface and Rz(u)-surface
into the R~(ti)-surface by means of linear transformations

which preserve the order of the branch points. For exam-

ple, the RK(ti)-surface looks like the R ,(u)-surface except

that the branch points at O, a, ~, and y are transformed
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into the branch points – 1/K, – 1, 1, and 1/K, in that These results are consistent, of course, with the require-
order. Moreover, it is shown in the Appendix that in- ment that OA + BC+ EF=AB + CE+ FO=O. The condi-
tegrals in the R.(u) -surface differ by an imaginary multi- tion that the Polygon be bounded by a rectamde is
plicative constant jC1 from the corresponding integrals in

.- .

the Rl(u)-surface, while integrals in the Rx(a)-surface dif-
AB+FO=CE=O.

fer by a real multiplicative constant C, from the corre-
This determines the value of d to be

spending integrals in the Rz(u)-surface. ‘Hence

/

“ du

(

-1 da
— =jC1 —

1) R,(u) . –l/K RK(U)

d= 2c1~(K) + C2K’(A)

2C,K(K) – C2K’(A) “
(lo)

We see then that the exterior dimensions of the reentrant

polygon including the location of strip are given in terms

of complete elliptic integrals of the first kind.

It now remains to determine ED from (6)

ED=(d–l)~a_-&

-(d+ 1)~’ R:u) .— (11)

In the u-planes

ED=j(d-l)cf;~

-(d+ l) C2~’2~ (12)

where

(7)

(13)

Substituting these results in (6)

OA =(d– l) CIK’(fc)+2(d+ I) C,K(A)

AB=j{2(d– l) CIK(K)+(d+ l) C,K’(A)}

BC= –2(d– l) CIK’(K)

CE=j{ –2(d– l) CIK(K)+(d+ l) C2K’(~)}

EF= (d– l) CIK’(K) –2(d+ 1) C2K(X)

where,

and

FO = –j2(d+ 1) C2K’(A)

as will be shown,

and

~ = CYpy-(py+ fiv(a+y)(p-a) )8 . ~14)
2

–@’+(l?Y–f iv(a+Y)(&4)~

Now both integrals in (12) can be expressed as elliptic

integrals of the first kind in which the lower limit is zero.

In the first place

(15)

On the other hand, if in the second integral of (12)
~’= ~~ /X@ with x = ~~ is substituted,

dwhere 83= 8; – 1 /XIS2. Finally,

ED=j{(d– l) C1(K(K)+F(81,K)) –(d+ l)cz~(~s~~)}”

(17)

(9) In the summary, the dimensions of the rectangular

coaxial structure of Fig. 3, suitably normalized, are given
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Fig. 3. Coaxial geometzy.

in terms of two independent parameters, a and /3, chosen

so that O<:a </3 <0.5 as follows:

B ‘4 K(K)K(~) + ~’(K)~’(~)

B1 ‘2~’(K)K’(~)

B2 ‘4~(K)~(71)- ~’(Ic)~’(~)

W=4ZC(K)F(83, A’)- 21C’(A)(~(K) + F’(81, K)) (18)

where

(19)

and F(x, k) is the incomplete elliptic integral of the first

kind of modulus k between the limits O and x. Moreover,

81 is given by (13) with y =0.5 and 8 = d/(1 + d2). Finally,

since Sz tends to be large,

(20)

where

,,82= (1/(l+2a)(l-a/p) -I)d+a
(21)

(vm(l-a/10 +l)kx”

IV. Tm CHARACTERISTIC IMPEDANCES

The characteristic impedance of these coaxial structures

is given t y q/C where q is the characteristic impedance of

the media, x376.7 O for a vacuum, and C is the geometric

capacitar~ce of the structure. Since q depends on the

measurec velocity of light and is known with only limited

accuracy all further discussion of characteristic imped-

ances will be limited to the evaluation of geometric capa-

citances.

Clearl~ the odd-mode characteristic impedance of the

structure in Fig. 3 can be obtained by doubling the

capacitance of the infinite line segment FOA B with re-

spect to the line segment (:DE in the ~-plane. Denoting

this capacitance by CO, from the familiar mapping of the

upper half of the t-plane into a rectangle, CO =

297

TABLE I

EVEN- AND ODD-MODECAPACITANCES

~

B,/B

I

1 “--” “--”

A/B 1 4347

i 5 CO1 I 9665

–---J --------

c, 1 7709

A(B1 I 6439
1

I 9829

6 J 16(94

—----- j -- -

7 ‘:1
I 8832

20732

Cel I 4653

A/B’ 22217

8 Coi 23165

Cel 1 3000

-
A/B 29733

9 co 30034

L -cd--- 1 !x-

2K’(k)/K(k) where

W/ B

25

20127

27015

22035

23067

27528

I 9686

26824

29494

I 7547

32889

34261

1 5481

48342

48631

1 333 I

5

26120

37528

27533

32351

38522

24209

38284

42072

21415

48708

50730

1 8906

77055

77833

1 6466

//= (~’– b’)(d- (#)

(a’- c’)(b’ - dj

For this particular case, a’= b, b’:=

d’= co. Then

kj=~ (1–b2)
b (l–ah)”

75

3.5714

47626

32627

41221

49062

28445

49279

54153

25062

63967

66633

22128

10496

10604

1 9372

(22:)

l/b, c’= l/a, and

(23)

a and b are readily expressed in terms of a and ~. In fact,

and

(24:)

where the minus sign in front of the radical was selected

since a and b are less than 1.
The even-mode capacitance ~, in which the outer wall

of the rectangular conductor defining B2 of Fig. 3 is a

magnetic wall is obtained by doubling the capacitance of

the line segment OAB with respect to the line segment

CDE in the t-plane. As above, C,= 2 K’(k)/ K(k) where k

is given by (22), except that now a’= b, b’= 1,/b, c’= 1,/a,

and d’= O. Thus

(25’)1

V. NUMERICAL RESIJLTS

In Table 1 the normalized value A/B and the odd- and

even-mode capacitances are given for a range of values of

W/B and i91/l?.

Since these values can be used to estimate the error in

more general approximate solutions of this problem, con-

siderable effort has been made to assure their accuracy.

The values of CO obtained by the formulas of this paper,
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for BI /B = 0.5, were compared with the values found for

the symmetrical case to which it corresponds and, for

which the general solution is known [4]. In all four cases,

the calculated values agreed within one digit in the tenth

place. On the other hand, as B1/B and W/B increase, the

accuracy begins to decrease. In the extreme case where

B1/B=0.9 and W/B= O.75, awIO-6, A’s1 – 10-12, and

d~~ 1 – 10-11. As this is continued, the computer will be

unable ultimately to distinguish I@’) and F(83, A’) from

infinity in the Landen transformations used in these

calculations, The fact that a is so small, however, permits

one to evaluate these critical integrals, without using the

Landen transformations, directly in terms of a with negli-

gible error, Comparison of these accurate values with

those obtained from the routines used to find the values

given in Table I gave agreement of about one digit in the

seventh place for the extreme case when B, /B = 0.9 and

W/B =0.75. On this basis, it is felt that the values in

Table I are correct to the nearest digit.

VI. APPENDIX

If K=(~~~–fi~@)/(fi

+ ~ ~ ), then the linear transformation

Similarly, if A=(l//3dy+a –l@ ~/3-a)/

(a ~ + 6 ~~ ), the linear transformation

/,>=

–C@y+(py–fi I/(a+y)(p-cr) )24

maps the u-plane into the o-plane so that u = – y trans-

forms inu= –l/A, u= Ogoesintou= –1, u=a goes into
~ = 1, and u = ~ goes into m= 1/A Again, substitution

shows that

du

V(y+ U) Z4((Y- U)(p- u)

*2 da

Selecting the positive sign for reasons given above, the

value of C2, used earlier, results.

Since y >~ >a >0, it is easily argued that O<K <1 as

well as O<X<l

maps the u-plane into the ~-plane so that u = O transforms

into u= —1/K, u=a goes ;nto ~= —1, u=~ goes into

u = 1, and u = y goes into a = 1/K. Substitution also shows [1]

that

du
[2]

Vu(a– U)(B– U)(y– u)
[3]

* 2J” dti
[4]

= fi ~ +fi ~ “ {(l-cd’)(l-K’ cd) “ ~51

The convention regarding the principal values of the in-

tegrals requires the selection of the plus sign, and so the ~61

value of c1, used earlier, results.
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