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Abstract—A two-parameter family of hyperelliptic integrals is exhibited
which maps the upper half-plane into the interior of a rectangle pierced by
a reentrant line. Since these integrals can be expressed as the sum of
elliptic integrals of the first kind, the odd- and even-mode characteristic
impedances of a two-parameter family of coaxial structures whose inner
conductors are strips, displaced perpendicularly to their width from the
center of the outer rectangular conductor, can be expressed in terms of
these well-known functions. Numerical values are given for a range of
values of W /B and B,/B. Here W is the width of the strip, B is the
height of the outer rectangular conductor, and B, is the distance from the
strip to the farthest parallel wall of the outer conductor.

I. INTRODUCTION

HE DESIGN of a broad class of coupled transmis-

sion-line directional couplers [1]-[3] depends on the
even- and odd-mode characteristic impedances of rectan-
gular coaxial line in which the rectangular inner conduc-
tor, sometimes idealized as being infinitely thin, is dis-
placed from the center of the outer rectangular conductor
in a direction parallel to one of its sides. In the only case
for which an exact solution is known [4], the inner con-
ductor is a strip which is displaced from the center of the
rectangular outer conductor parallel to its width.

In this paper, the even- and odd-mode characteristic
impedances of a two-parameter family' of coaxial struc-
tures, in which the inner conductor is a strip which is
displaced from the center of the rectangular outer conduc-
tor perpendicular to its width, are given. These exact
solutions not only permit the exact design of broadside-
coupled strip couplers [5] but also provide solutions of
known accuracy with which more general approximations
may be compared.

The Schwartz—Cristoffel transformation

z- (! (d—1t)dr (1)

O V(£ —(a+1/a)i+1)(22—(b+1/b)t+1)

maps the upper half of the ¢-plane in Fig. 1 into the
interior of the reentrant, quadrilateral polygon in the
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11t should be observed that this does not include all coaxial structures
of this form.
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Fig. 1. Z-, t-, and u-planes.

Z-plane of Fig. 1. The capital letters indicate correspond-
ing points in the two figures. We shall see how the value
of d between 1/b and 1/a can be chosen so that sides OF
and AB are the same length. It is then clear that, by
reflecting the Z-plane polygon in the line FB, a rectangu-
lar coaxial structure is formed in which the outer conduc-
tor consists of a rectangle of height 04 and width 2FO
while the inner conductor is a strip of zero thickness and
of width 2ED. Although this strip is centered in the 2F0O
dimension, it is not, in general, centered in the O4 dimen-
sion.

II. EVALUATION OF THE INTEGRAL

Since d—1=(d— 1)(1+£)/2+(d+ D)1 —1)/2,
1

Z=‘§

(d—1)(1—r)dt
(a+1/a)t+1)(2—(b+1/b)t+1)

Lo

E {\/t(1~t)2(t2—

+ (d+1)(1—t?*)dt
Vil + 0% (2~ (a+1/a) i+ 1)(2 = (b+1/b)t+1)
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This can be written

t d+1
t) (1+t)
1+t2 1+ ¢
(1—1%)dr
1+

®3)

| 't(t2+ 1=(a+1/a)t)(*+1=(b+1/b)1)
\/ I+ DA+ A (1+1?)

Now if the change of variable’ u=1¢/(1+ %) is made,
it will be found that du/dt=(1—#3)/(1+ ), 1+2u=
A+ 0?/(1+13), and 1-2u=(1—-1¢?/(1+¢%. Thus the
original transformation can be written

1 d+1
7=
f(\/1~2u " )

V1+2u
Vau(l—(a+1/a)a)(1—(b+1/b)u)

du

By this change of variable, the original transformation
has been expressed as the sum of two elliptic integrals of
the first kind. The transformation u=/(¢*+ 1) maps the
upper half s-plane into the entire u-plane containing the
two branch points *+0.5, which may be joined by a
branch cut since the points corresponding to a and 1/aq,
for example, are not at the same point in the u-plane.

Thus the path of integration along the indented, real

axis of the ¢-plane maps into the indented, closed loop
surrounding the branch cut in the u-plane as shown in

Fig. 1. Of course, a=a/(1+a?, B=5b/(1+b?, and §=
d/(1+d?. It is important to observe that a+1/a and
b+1/b>>2 since the geometric mean is less than the
arithmetic mean. Thus a and B8<0.5. Moreover, it is
readily demonstrated that 8—a >0 whenever 1>b>a>
0. Thus we know that a <8 <p.

(4)

III.

If v=0.5, then (4), except for a scale factor, can be
written

THE DIMENSIONS OF THE POLYGON

du
—1)
f Vu(a—u)(B—u)(y—u)

+(d+1) f ’ du
0 V(y+u)u(a—u)(B—u)
where all integrations are performed on the loop encir-

cling the branch cut in the u-plane. The values of these
integrals are not single valued functions of the limits,

Z=(d

)

2The use of this change of vanable to reduce the hyperelliptic integral
of the form in (2) to the sum of two elliptic integrals of the first kind is
due to Roberts [6].
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Fig. 2. R,(u) and R,(u) surfaces.

however, but depend on the actual paths of integration. If
R,(u) denotes the radical in the first integral and R,(u)
denotes the radical in the second integral, the correspond-
ing Riemann surfaces are shown in Fig. 2 with the proper
branch cuts. Although at no time does the path of integra-
tion cross a branch cut in either surface, it should be
noted that R,(u) and R,(u) each have different signs on
opposite sides of a branch cut. With this in rind, it is
readily seen that the directed lengths of the sides of the
polygon are

04 =(d— 1)[ ¥ +(d+1)f0“—k;2‘i(”u—)-
AB-—(d—l)fB du +(d+1)f'8 R:’(”‘u
e

co=+(d- [’ Rl(“ )f R;’(“
EF=+(d-1) [ & d“

6
FO=+2(d+ 1)] Rz(u) (6)
Here it is assumed that these integrals are given their
principal value, that is, their value on the upper half of the
u-plane.

These elliptic integrals of the first kind may be
evaluated by transforming them to Legendre’s normal
form. This is done in the Appendix by transforming the
R (u)-surface into the R (w)-surface and R,(u)-surface
into the R, (w)-surface by means of linear transformations
which preserve the order of the branch points. For exam-
ple, the R (w)-surface looks like the R (u)-surface except
that the branch points at 0, a, 8, and y are transformed
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into the branch points —1/k, —1, 1, and 1/«, in that
order. Moreover, it is shown in the Appendix that in-
tegrals in the R (w)-surface differ by an imaginary multi-
plicative constant jC, from the corresponding integrals in
the R,(u)-surface, while integrals in the R, (w)-surface dif-
fer by a real multiplicative constant C, from the corre-
sponding integrals in the R,(u)-surface. Hence
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These results are consistent, of course, with the require-
ment that O4 + BC+ EF=AB+ CE+ FO=0. The condi-
tion that the polygon be bounded by a rectangle is

AB+ FO=CE=0.
This determines the value of d to be

2C,K(k)+ C,K’(\)

1= 2 C K =CK () (10)
C -1 dw
f R ( %) =jC [_1/ m We see then that the exterior dimensions of the reentrant
o polygon including the location of strip are given in terms
—_jc, fl/K do  _ C,K'() of complete elliptic integrals of the first kind.
1 Ry(w) It now remains to determine ED from (6)
B du +1 dw
—e—=jC ——=j2C,K 8 du
j; Rl(u) J lf_1 R (w) J2CK(x) ED:(d“l)f R_(zJ
/¢ dw
ic, [ -2 =—-cK
J <u) ) R KW @[ g (tn
f f o _de In the w-planes
Rz(“) g —1/x Ry(w) P
A e ED=j(d— 1)cf
G fl R~ KW R, ;w)
8, w
« du o+l de —(d+ DG, [T (12)
|y ®m =€) =y 2EW h L R)
where
B du /A dw
= —Z = jC,K(N). 7
R =G R K )
- VB (Va Vy—f + VB Vy=a)~(Va Vy—a + VB Vy—4)s )
1=
Vaf (\/E Vy—28 —\/—\/y——a)+(\/a\/‘yT—\/§ Vy—,B)S
Substituting these results in (6) and
=(d— (k) +2(d + D C,K(A
04 =(d=1)C,K (1) +2(d+ DKM afty—(py+V By V(e+y)(B—a) )8 14
AB=j{2(d—1)C,K(x) +(d+ 1) C,K'(\)} 8,= (14)

C=—2(d—1)C,K'(x)
CE=j{-2d—1)C,K(x)+(d+ 1) ,K'(\)}
EF=(d—1)C,K'(k)=2(d+1)C,K(\)
FO=—j2(d+1)C,K'(\)

where, as will be shown,

(8

2

\/E Vy—a +Va Vy—8
2

\/E Vy+a +VyV B—a
_VBVy—a-VaVy-8
VB Vi—a +Va Vi F

C =

C2 =

and
VB Vita Vi VB—a
VB Vy+ta +Vy VB—a

A= 9)

~aBy+(By—V By V(a+1)(B—a))d

Now both integrals in (12) can be expressed as elliptic
integrals of the first kind in which the lower limit is zero.

In the first place
5 dw 0 dw 5,
= + = K(x)+ F(8,,%).
I o /| SRR () + F(8,,%)
(15)

On the other hand, if in the second integral of (12)
o' =Vaw?—1 /N with X'=V1-A% is substituted,
8 dw . 83 dow’
CR@ 7 R

1 /N'8,. Finally,

dw
R (w)

(16)

./F(639 >\,)

where 8, =1/67 —

ED=j{(d—1)C,(K(x)+ F(8,,k)) = (d+1) C,F(85,X)}.
(17)

In the summary, the dimensions of the rectangular
coaxial structure of Fig. 3, suitably normalized, are given
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Fig. 3. Coaxial geometry.

in terms of two independent parameters, & and 8, chosen
so that 0<Ca <8 <0.5 as follows:

A=8K(k)K'(\)

B=4K(k)K(M\)+ K'(k)K'(N)

B =2K'(x)K'(A)

B,=4K(k)K(\)— K'(x)K'(A)

W =4K(k)F(8;,N)—2K' (A\)(K(x)+ F(8,,x)) (18)

where

e V1/a=2 -V1/8-2
Vi/a=2 +V1/8-2
A=M—\/m
V1i+2a +Vi—a/B

and F(x,k) is the incomplete elliptic integral of the first
kind of modulus k& between the limits 0 and x. Moreover,
8, is given by (13) with y=0.5 and §=d/(1+ d?). Finally,
since §, tends to be large,

8y= ﬂ_—(i,/ 2

(19)

(20)

where

5= (V1 +2a)(1—a/B) *1)8+a.

(V(A+2a)(1-a/B) +1)8—a 2l

1V. THE CHARACTERISTIC IMPEDANCES

The characteristic impedance of these coaxial structures
is given by n/ C where 7 is the characteristic impedance of
the media, ~376.7 2 for a vacuum, and C is the geometric
capacitanice of the structure. Since n depends on the
measurec velocity of light and is known with only limited
accuracy. all further discussion of characteristic imped-
ances will be limited to the evaluation of geometric capa-
citances.

Clearly the odd-mode characteristic impedance of the
structure in Fig. 3 can be obtained by doubling the
capacitance of the infinite line segment FOAB with re-
spect to the line segment CDE in the f-plane. Denoting
this capacitance by C,, from the familiar mapping of the
upper half of the f-plane into a rectangle, Cj=
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TABLE 1
EVEN- AND ODD-MODE CAPACITANCES
B8,/8 Ww/B
| 25 5 75
A/B 14347 20127 28120 35714
| 5 GCo | 9665 270t5 37528 47626
Ce 1 7709 22035 27533 32627
A/B | 6439 23067 32351 41221
6 Co; | 9829 27528 38522 43062
Ce | 6194 1 9686 24209 28445
A/8B | 8832 26824 38284 49279
7 Co 20792 29494 42072 54153
Ce 14653 | 7547 21415 25062
A/B; 22217 32889 48708 63967
i
8 Co" 23165 34261 50738 66633
Ce | 3000 | 5481 | 8906 22128
1 A/B 29733 4 8342 77055 10498
9 Co 30034 48831 77833 10 604
. CE 11077 [ 3331 | 6466 19372
R R
’
2K'(k)/ K(k) where
7 ’ ’ ’
Kim (¢ =b)(c'=d) (22)

- (a/_c/)(b/_dw) M

For this particular case, a'=b, b'=1/b, ¢’=1/a, and
d'=o0. Then

(1-5%

(1—ab)” (23)

24
k"b

a and b are readily expressed in terms of « and 8. In fact,

1-V1-4a>
a= —u—
2a
and
1-y1-48>
28
where the minus sign in front of the radical was selected

since @ and b are less than 1.
The even-mode capacitance C, in which the outer wall

of the rectangular conductor defining B, of Fig. 3 is a
magnetic wall is obtained by doubling the capacitance of
the line segment OAB with respect to the line segment
CDE in the ¢-plane. As above, C,=2K’(k)/ K(k) where k
is given by (22), except that now a’=b, b'=1/b, ¢'=1/a,
and d'=0. Thus

b= (24)

1—52

2
K l—ab’

(25)

V. NUMERICAL RESULTS

In Table 1 the normalized value 4 /B and the odd- and
even-mode capacitances are given for a range of values of
W/Band 8,/B.

Since these values can be used to estimate the error in
more general approximate solutions of this problem, con-
siderable effort has been made to assure their accuracy.
The values of C, obtained by the formulas of this paper,
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for B,/ B=0.5, were compared with the values found for
the symmetrical case to which it corresponds and for
which the general solution is known [4]. In all four cases,
the calculated values agreed within one digit in the tenth
place. On the other hand, as B,/ B and W/ B increase, the
accuracy begins to decrease. In the extreme case where
B,/B=09 and W/B=0.75, a~1075, N'~1—-10""2, and
8;~1—107"!, As this is continued, the computer will be
unable ultimately to distinguish K(A") and F(8;,A") from
infinity in the Landen transformations used in these
calculations. The fact that « is so small, however, permits
one to evaluate these critical integrals, without using the
Landen transformations, directly in terms of a with negli-
gible error. Comparison of these accurate values with
those obtained from the routines used to find the values
given in Table I gave agreement of about one digit in the
seventh place for the extreme case when B,/B=0.9 and
W/B=0.75. On this basis, it is felt that the values in
Table I are correct to the nearest digit.

VI. APPENDIX

If x=(\/§ Vy—a —Va \/Y—,B )/(\/E Vy—a
+Va \/7—:8 ), then the linear transformation
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Similarly, it A=(V B Vy+ta ~Vy Vp-a)/
(\/E Vita +Vy V-« ), the linear transformation

_ afy—=(By+V By V(a+7)(B—a) Ju
—aBy+(Br—V By V(e+y)(B=a) )u

maps the u-plane into the w-plane so that u= — v trans-
forms in w=—1/A, u=0 goes into w= — 1, u= & goes into
w=1, and u=p goes into w=1/A. Again, substitution
shows that

du
V(v +wu(a—u)(B—u)

_ +2 . dw
VB Vaty +Vy VB—a 1-0H)(1-2%?)

Selecting the positive sign for reasons given above, the
value of C,, used earlier, results.

Since y>B8 >a >0, it is easily argued that 0<x <1 as
well as 0<A< 1.

_ VB (Va V=P +VB Vi=a)~(Va Vy=a + VB Vy=B)u

Ve (Va V=B = VB Vy=a)+(Va Vy=a = VB Vy=p Ju

maps the u-plane into the w-plane so that =0 transforms
into w=—1/k, u=a goes into w=—1, u=B goes into
w=1, and ¥="y goes into w=1/k. Substitution also shows
that

du

Vu(a—u)(B~u)(y—u)
_ *2j ) dw
\/ﬁ Vy—a +Va Vy-p \/(l—wz)(l—sz)

The convention regarding the principal values of the in-
tegrals requires the selection of the plus sign, and so the
value of C,, used earlier, results.
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